Югорский физико-математический лицей

В.П. Чуваков

Делимость целых чисел в задачах

Сборник задач

Ханты-Мансийск 2015 **Делимость целых чисел в задачах**: Сборник задач, - Ханты-Мансийск, Югорский физико-математический лицей, 39 с.

Составитель: В.П. Чуваков

В сборнике собраны задачи по на делимость целых чисел различной степени сложности, которые встречались на предметных и вузовских олимпиадах по математике, ЕГЭ. Для решения большинства задач необходимо иметь системные знания, часто выходящие за пределы стандартной школьной программы.

Приведены ответы к задачам и комментарии к решениям.

Представленные задачи рассматривались на факультативе по решению задач повышенной сложности для 11 класса лицея.

Пособие предназначено для углубленного изучения математики, подготовки к предметным и вузовским олимпиадам, ЕГЭ.

Адресовано школьникам старших классов и преподавателям.

© Чуваков В.П., 2015

1. Общие свойства делимости, алгебраическое представление натуральных чисел,

- **1.1.** Найдите все пары взаимно простых натуральных чисел a и b таких что, если к десятичной записи числа a приписать справа через запятую десятичную запись числа b, то получится десятичная запись числа $\frac{b}{a}$.
- **1.2**. Найдите все пары пятизначных чисел (x, y) такие, что число xy, полученное приписыванием десятичной записи числа y после десятичной записи числа x, делится на xy.
- **1.3.** Найдите пятизначное число, произведение которого с числом 9 есть пятизначное число, записанное теми же цифрами, но в обратном порядке.
- **1.4**. Найдите наименьшее натуральное число, первая цифра которого l, а ее перестановка в конец числа приводит к увеличению числа в три раза.
- **1.5.** Найдите шестизначное число, которое уменьшается в 6 раз, если три его первые цифры, не меняя порядка, переставить в конец числа.
- **1.6**. Найдите все натуральные числа, первая цифра которых 6, а при зачеркивании этой цифры число уменьшаются в 25 раз.
- **1.7**. Найдите произведение двух трехзначных чисел, если оно втрое меньше шестизначного числа, полученного приписыванием одного из этих двух чисел вслед за другим.

- **1.8**. Найдите все пары натуральных чисел a и b, удовлетворяющие равенству $a^b + 127 = \overline{ab}$.
- **1.9.** Найдите все пары натуральных чисел a и b, удовлетворяющие равенству $a^b + 320 = \overline{ab9}$.
- **1.10.** Найдите все пары натуральных чисел a и b, такие, что если к десятичной записи полученного числа a^2 приписать справа десятичную запись числа b, то получится число, большее произведения $a \cdot b$ в три раза.
- **1.11.** Найдите все пары натуральных чисел a и b, такие, что если к десятичной записи числа a приписать справа десятичную запись числа b^2 , то получится число, большее произведения $a \cdot b$ ровно в семь раз.
- **1.12.** Известно, что числа $\overline{ab71}$ и $\overline{b71a}$ делятся на простое трехзначное число p. Найдите числа p,a,b.
- **1.13**. Найдите хотя бы три десятичных числа, делящихся на 11, в записи которых используются все цифры от 0 до 9?
- **1.14.** Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, делящееся на 11.
- **1.15.** При каком наименьшем натуральном n число 2009! не делится на n^n ?
- **1.16.** Найдите наибольшее натуральное n, для которого каждое из чисел k^k при k=1,2,...n является делителем числа 2013!.

- **1.17.** Найдите наибольшее натуральное число n, для которого число 2009! делится на каждое из чисел k^k при k = 1, 2, 3...n.
- **1.18.** Найдите все натуральные числа n, при которых выражение $n^2 + 5n + 16$ делится на 169.
- **1.19.** Докажите, что для всех натуральных n выражение $n^2 + 3n + 5$ не делится на 121.
- **1.20**. Найдите все натуральные числа, меньшие 10^5 , которые делятся на 1999 и сумма цифр которых равна 25.
- **1.21.** Найдите все трехзначные числа, которые в 5 раз больше произведения своих цифр.
- **1.22.** Даны натуральные числа M и N больше десяти, состоящие из одинакового количества цифр такие, что M=3N. Чтобы получить число M, надо в числе N к одной из цифр прибавить 2, а к каждой из оставшихся прибавить по нечетной цифре. а) Приведите пример такого числа; б) Может ли число N оканчиваться цифрой 1; в) Какой цифрой может оканчиваться число N?
- **1.23.** Известно, что сумма цифр натурального числа N равна 100, а сумма цифр числа 5N равна 50. а) Может ли число N оканчиваться на 1; б) Докажите, что N четно.
- **1.24.** Даны два трехзначных натуральных числа. Известно, что их произведение в N раз меньше шестизначного числа, полученного приписыванием одного вслед за другим. a) Может ли N

- равняться 2? б) Может ли N равняться 3?в) Какое наибольшее значение может принимать N?
- **1.25**. Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки?
- **1.26.** Найдите все натуральные числа, являющиеся степенью двойки, такие, что после зачеркивания первой цифры их десятичной записи снова получается число, являющееся степенью пвойки.
- **1.27**. Найдите наибольшее число, являющееся полным квадратом, которое после вычеркивания двух последних цифр снова превращается в полный квадрат.
- **1.28.** Найдите все натуральные числа, большие 9, которые являются полным квадратом, а десятичная запись которых состоит из различных цифр одной четности.

Ответы к главе 1:

1.1.
$$a = 2, b = 5 /$$
 1.2. $x = 16667, y = 33334 /$ **1.3**.10989 / **1.4**.142857 /

1.5.
$$857142/$$
 1.6. $n = 625 \cdot 10^{k-2}/$ **1.7.** $55778/$ **1.8.**

$$a = 1, b = 28; a = 14, b = 1/$$
 1.9. $a = 3, b = 2; a = 97, b = 2/$

1.10.
$$a = 1, b = 5 \cdot 10^{k-1}$$
; $a = 2, b = 8 \cdot 10^{k-1} /$ **1.11**. $a = 1, b = 2 /$

1.12.
$$p = 101, a = 7, b = 1/1.$$
1.13. 9576843210, 9873546210, 9876513240/

1.20.
$$n = k = m = 2$$
, $p = 3/$ **1.21.**175/**1.22.** 16;48; HeT; 6 \ **1.23**. HeT/

1.27.1681/**1.28**.64,6084/

2. Разложение на простые множители, НОД, НОК

- **2.1.** Найдите все натуральные числа, которые делятся на 42 и имеют ровно 42 различных натуральных делителя (включая 1 и само число).
- **2.2.** Найдите все натуральные числа, последняя цифра которых равна 0 и которые имеют ровно 15 различных натуральных делителей (включая 1 и само число).
- **2.3.** Найдите все натуральные числа, которые делятся на 30 и имеют ровно 99 различных натуральных делителя (включая 1 и само число).
- **2.4.** Найдите все натуральные числа, которые делятся на 5600 и имеют ровно 105 различных натуральных делителя (включая 1 и само число).
- **2.5.** Найдите все натуральные числа n, имеющие ровно 6 натуральных делителей (включая 1 и само число), сумма которых равна 104.
- **2.6.** Натуральное число n имеет ровно 6 натуральных делителей (включая 1 и само число), сумма которых равна 3500. Найдите n.
- **2.7.** Натуральное число n имеет ровно 9 натуральных делителей (включая 1 и само число), сумма которых равна 1767. Найдите n.
- **2.8**. Найдите все натуральные числа, имеющие ровно шесть натуральных делителей, сумма которых равна 3528.
- **2.9.** Найдите все натуральные числа, которые равны квадрату числа своих делителей

- **2.10.** Произведение нескольких различных простых чисел делится на каждое из этих чисел, уменьшенное на 1. Чему может быть равно это произведение?
- **2.11.** Множество A состоит их n натуральных чисел (n>7). Наименьшее общее кратное всех чисел равно 210, а HOД любых двух чисел из A больше единицы. Найдите эти числа, если произведение всех чисел из множества A делится на 1920 и не является квадратом никакого натурального числа.
- **2.12.** Найдите все натуральные n, при которых дробь $\frac{7n^2 + 11n + 4}{6n^2 + 5n}$ сократима.
- **2.13.** При каких натуральных n существует хотя бы одно рациональное число x, удовлетворяющее равенству $n^2 + 1 = (2n-1)^x$?
- **2.14.** При каких натуральных n существует хотя бы одно рациональное число x, удовлетворяющее условию $n^2 + 4 = (2n+3)^x$?

Ответы к главе 2:

- **2.1.** $2^{1}3^{2}7^{6}$; $3^{1}2^{2}7^{6}$; $2^{1}7^{2}3^{6}$; $3^{1}7^{2}2^{6}$; $7^{1}3^{2}2^{6}$; $7^{1}2^{2}3^{6}$ /
- **2.2.** 2500;400/ **2.3.** $2^23^25^{10}; 2^23^{10}5^2; 2^{10}3^25^2/$
- **2.4.** $2^65^47^2$; $2^65^27^4$ / **2.5.** 63 / **2.6.** 1996 / **2.7.** 1225 / **2.8.** 2012 /
- **2.9.** 9/ **2.10.** 6;42; 1806/ **2.11.** 2;6;10;14;30;42;70;210/
- **2.12.** n = 2p; n = 11p + 1/ **2.13.** n = 5/ **2.14.** n = 1; n = 11/

3. Уравнения в целых числах

- **3.1.** Решите в натуральных числах уравнение $1 + 2! + 3! ... + n! = k^2$.
- **3.2.** Решите в натуральных числах уравнение $13 + 5n + n! = k^2$.
- **3.3.** Решите в натуральных числах уравнение $n! + 4n 9 = k^2$.
- **3.4.** Решите в натуральных числах уравнение $12n!+11^n+2=k^2$.
- **3.5.** Решите в целых числах уравнение $1+2^k+2^{2k+1}=n^2$.
- **3.6.** Решите в натуральных числах уравнение $2xy = x^2 + 2y$.
- **3.7.** Решите в целых числах уравнение $m^4 2n^2 = 1$.
- **3.8.** Решите в целых числах уравнение $1 + 2^x = y^2$.
- **3.9.** Решите в целых числах уравнение $3^{n} + 8 = x^{2}$.
- 3.10. Решите в целых числах уравнение

$$2^{n} + 2^{2n} + 2^{3n} + ... + 2^{k \cdot n} = 2006.$$

3.11. Решите в целых числах уравнение

$$3^{n} + 3^{2n} + 3^{3n} + ... + 3^{k \cdot n} = 2007.$$

- **3.12.** Решите в натуральных числах уравнение xy = 13(x + y).
- **3.13.** Решите в натуральных числах уравнение xy = 17(x + y).
- **3.14.** Решите в натуральных числах уравнение $\frac{1}{m} + \frac{1}{n} = \frac{1}{25}$, где m > n.

- **3.15.** Решите в целых числах уравнение $\frac{1}{x} + \frac{1}{y} = \frac{1}{9}$ (x>y).
- **3.16.** Решите в целых числах уравнение x! + y! = 10z + 13.
- **3.17.** Решите в целых числах уравнение x!+y!=10z+17.
- **3.18.** Решите в натуральных числах уравнение x! + y! = (x + y)!.
- **3.19.** Решите в натуральных числах уравнение $5 \cdot k! = m! n!$.
- **3.20.** Решите в натуральных числах уравнение $k!=3 \cdot m! + 6 \cdot n!$.
- **3.21.** Решите в натуральных числах уравнение n! + k! + m! = p!.
- **3.22.** Решите в натуральных числах уравнение $k! = 5 \cdot m! + 12 \cdot n!$.
- **3.23.** Решите в натуральных числах уравнение $k! = 2 \cdot m! 7 \cdot n!$.
- **3.24.** Решите в натуральных числах уравнение $y^2 = 16 + z^x$, где z простое число.
- **3.25.** Решите в натуральных числах уравнение $n^5 + n^4 = 7^m 1$
- **3.26.** Решите в целых числах уравнение $m \cdot n^2 = 10^5 \cdot n + m$.
- **3.27.** Решите в целых числах уравнение $3^m + 4^n = 5^k$.
- **3.28.** Решите в натуральных числах уравнение $3^m + 7 = 2^n$.
- **2.29.** Решите в натуральных числах уравнение $3 \cdot 2^m + 1 = n^2$.
- **3.30.** Решите в натуральных числах уравнение $2^m 3^n = 1$.

3.31. Решите в натуральных числах уравнение $3^n - 2^m = 1$.

Ответы к главе 3:

3.1.
$$n = k = 3/$$
 3.2. $n = 2, k = 5/$ 3.3. $n = 2, k = 1; n = 3, k = 3/$

3.4.
$$n = 1, k = 5/$$
 3.5. $k = 0, n = \pm 2; k = 4, n = \pm 23/$ **3.6.** $x = 4, y = 8/$

3.7.
$$n = 0, m = \pm 1/$$
 3.8. $(3,3), (3,-3)/$ **3.9**. $n = 0, x = \pm 3/$

3.10.
$$n = 0, k = 2006/$$
 3.11. $n = 0, k = 200$

3.14.
$$m = 150, n = 30, m = 650, n = 26$$

3.16.
$$x = 1, y = 2, z = -1; x = 2, y = 1, z = -1/$$

3.17.
$$x = 1, y = 3, z = -1; x = 3, y = 1, z = -1/$$
 3.18. $x = 1, y = 1/$

3.19.
$$m = 3, k = n = 1; m = 6, k = n = 5/$$

23.20.
$$m = 3, k = 4, n = 1; m = 8, k = 9, n = 8/$$
 3.21. $n = k = m = 2, p = 3/$

3.22.
$$k = 17, n = m = 16; n = 5, k = 7, m = 6.$$

3.23.
$$k = n = 3, m = 4; k = m = 7, n = 6/3.24.(7;12;2), (2;5;3)/$$

3.25.
$$n = m = 2/$$
 3.26. $n = 3$, $m = 37500$; $n = 9$, $m = 11250/$

3.27.
$$m = n = k = 2/3$$
.28. $n = 4$, $m = 2/2$. 2/3.29.85/3.30. $n = 1$, $m = 2/2$

3.31.
$$n = 1, m = 12; n = 2, m = 3/$$

4. Задачи на другие темы

- **4.1.**Все правильные несократимые дроби с двузначными числами в числителе и знаменателе упорядочили по возрастанию. Между какими двумя последовательными дробями оказалось число $\frac{5}{8}$?
- **4.2.** Среди обыкновенных дробей с положительными знаменателями, расположенными между числами $\frac{96}{35}$ и $\frac{97}{36}$ найдите такую, знаменатель которой минимален.
- **4.3.** Найдите две последние цифры числа 11^{10} .
- **4.4.** Найдите последнюю цифру числа 2^{3^4} .
- **4.5.** Найдите две последние цифры числа 2^{999} .
- **4.6.** Докажите, что число $\underbrace{11....1}_{2n} \underbrace{22...2}_{n}$ является полным квадратом.
- **4.7.** Докажите, что число $\underbrace{11...1}_{100} \underbrace{55...56}_{100}$ является полным квадратом.
- **4.8.** Докажите, что число $(10^n + 10^{n-1} + ... + 10)(10^{n+1} + 5) + 1$ является полным квадратом.
- **4.9.** Докажите, что $\underbrace{33...3^2}_n = \underbrace{11...1}_n \underbrace{088...89}_n$
- **4.10.** Докажите, что $\underbrace{33...34^2}_{n} = \underbrace{11...1}_{n+1} \underbrace{55...56}_{n}$
- **4.11.** Докажите, что числа 10017, 100117, 1001117, ...делятся на 53.

- **4.12.** Докажите, что число $\underbrace{11...1}_{n} \underbrace{211...1}_{n}$ составное.
- **4.13.** Докажите, что число $\sqrt{\underbrace{44...4}_{1980} 11 \cdot \underbrace{44...4}_{990} + 9}$ целое.
- **4.14.** Докажите, что число $\underbrace{11...1}_{100}\underbrace{22...2}_{100}$ является произведением двух последовательных натуральных чисел.
- **4.15.** Докажите, что число $2^{\frac{100}{11...122...2}}+1$ составное.
- **4.16.** Найдите наибольшую сумму значений параметров a и b, если известно, что числа $a, a \cdot b, \overline{ab} + 2b^2 b 20, \overline{ba} + 2b^3 10b 2$ образуют геометрическую прогрессию, причем $\overline{ab} + \overline{ba}$ квадрат натурального числа.
- **4.17.** Найдите наименьшую сумму значений параметров a и b, если известно, что числа 2a+2, 3b-3, $\overline{ab}+2b^2-7-2a$, $\overline{ba}+2+5a-6b$ образуют арифметическую прогрессию, причем $\overline{ab}-\overline{ba}$ квадрат натурального числа и $a\neq 0$.
- **4.18.** Найдите наименьшую сумму значений параметров a и b, если известно, что числа b, ab, $\overline{ba} + a^2 a 20$, $\overline{ab} 2$ образуют геометрической прогрессию, причем b > 0.
- **4.19.** Найдите сумму квадратов всех значений параметров a и b, если известно, что числа 2a, 3b, $\overline{ab} 2a$, $\overline{ba} + 5a 6b$ образуют

арифметическую прогрессию, причем $\overline{ab} - \overline{ba}$ — квадрат натурального числа.

- **4.20.** Найдите все натуральные числа a такие, что сумма цифр числа a и сумма цифр числа a+1 делятся на a. Укажите наименьшее из этих чисел.
- **4.21.** Найдите все натуральные числа a такие, что сумма цифр числа a и сумма цифр числа a+1 делятся на a. Укажите наибольшее шестизначное число такого вида.
- **4.22.** Сумма первых четырнадцати членов арифметической прогрессии равна 77. Известно, что ее первый и одиннадцатый члены натуральные числа. Чему равен восемнадцатый член прогрессии?
- **4.23.** Числа 54 и 128 являются членами некоторой геометрической прогрессии. Найдите все натуральные числа, которые встречаются в этой геометрической прогрессии.
- **4.24.** Числа 24 и 2187 являются членами некоторой геометрической прогрессии. Найдите все натуральные числа, которые встречаются в этой геометрической прогрессии.
- **4.25.** Докажите, что если в числе 12008 между нулями вставить любое количество троек, то получится число, делящееся на 19.

Ответы к главе 4:

4.1.
$$\frac{58}{93} < \frac{5}{8} < \frac{62}{99} /$$
4.2. $\frac{19}{7} /$ **4.3.** $01 /$ **4.4.** $2 /$ **4.5.** $88 /$ **4.6.** $(\underbrace{33...3}_{n})^{2} /$

4.7.
$$(33...34)^2$$
 / **4.8.** $(33...34)^2$ / **4.16**.11/4.18.987654321/

4.19. n = 2, m = 2/4.20.1399999/4.21.909999/

4.22. -5/ **4.23.** 54, 72, 96, 128/ **4.24.** 24, 108, 486, 2187.

Комментарии к главе 1:

- **1.1.** Пусть b n- значное число. Тогда $\frac{b}{a}=a+\frac{b}{10^n}$ и $10^n(b-a^2)=ab$. Далее, $(a,b)=1 \Rightarrow (b-a^2,ab)=1 \Rightarrow$ $b-a^2=1,ab=10^n \Rightarrow a=2^n,b=5^n \Rightarrow a=2,b=5$ $(5^n-2^{2n}=1)$
- **1.2.** $N = x \cdot 10^5 + y = (xy) \cdot p \Rightarrow y$ делится на $x \Rightarrow y = x \cdot n$. $x \cdot 10^5 + x \cdot n = (x \cdot xn) \cdot p \Rightarrow 10^5 + n = x \cdot n \cdot p \Rightarrow n$ делит 10^5 . Так как x, y— пятизначные числа, то n—цифра и n = 2, 4, 5, 8.

Если n=2, то $10^5+2=100002=2\cdot 50001=2\cdot 3\cdot 16667=2\cdot x\cdot p$. Так как все числа пятизначные, то возможен только один вариант: x=16667, y=2x=33334.

Если n=4, то $10^5+4=100004=4\cdot 25001=x\cdot 2\cdot p$. Так как числа пятизначные, то вариантов нет. Аналогично разбираются случаи $n=5,\,8.$

1.3. Пусть $n = \overline{abcde}$, $\overline{abcde} \cdot 9 = \overline{edcba}$. Так как пятизначное число при умножении на 9 остается пятизначным, то a = 1, а b = 0 или b = 1. Если b = 0, то $10cde \times 9 = edc01 \Rightarrow e = 9 \Rightarrow$ $\Rightarrow 10cd9 \times 9 = 9dc01 \Rightarrow 9d + 8$ оканчивается на $0 \Rightarrow d = 8$. Далее $10c89 \times 9 = 98c01 \Rightarrow 9c + 8$ оканчивается на $c \Rightarrow d = 7$. Если b = 1, то $11cde \times 9 = edc11 \Rightarrow e = 9$, 9d + 8 оканчивается на $1 \Rightarrow d = 7$. Далее, $11c79 \times 997c11 \Rightarrow 9c + 7$ оканчивается на c, однако таких чисел не существует.

- **1.4.** Пусть $n=1\cdot 10^m+x$, k=10x+1, $k=3n \Rightarrow 7x=3\cdot 10^m-1$, т.е. $3\cdot 10^m\equiv 1 \pmod{7}$. Если делить "столбиком", то можно получить, что $300000=7\times 42857+1\Rightarrow x=42857$, n=142857.
- **1.5.** Пусть $n = \overline{abcxyz} = \overline{pq}$, $m = \overline{xyzabc} = \overline{qp}$, $n = 1000 \cdot p + q$. Тогда $1000 \cdot p + q = 6(1000 \cdot q + p) \Rightarrow 994 \cdot p = 5 \cdot 999 \cdot q \Rightarrow 142 \, p = 857 \, q$. Далее, $(p, q) = 1 \Rightarrow q = 142, p = 857$.
- **1.6.** Пусть $n = \overline{6abc...} = 6 \cdot 10^k + p$. Тогда $6 \cdot 10^k + p = 25 p$ $6 \cdot 10^k = 24 p \Rightarrow p = 25 \cdot 10^{k-2} \Rightarrow n = 625 \cdot 10^{k-2}$.
- **1.7.** Пусть a, b трехзначные числа, $\overline{ab} = 3ab \Rightarrow 1000a + b = 3ab$. Отсюда следует, что $1000a = b \cdot (3a 1)$ и 3a 1 делитель числа 1000. Но $3a 1 \le 300 1 = 299$ и 3a 1 может быть равно 500 или 1000. Если 3a 1 = 500, то a = 167, b = 2a = 334, $a \cdot b = 55778$. А уравнение 3a 1 = 1000 не имеет решений в целых числах.
- **1.8.** Пусть $a^b + 127 = \overline{ab}$. Если a = 1, то b = 28. Пусть $a \ge 2$. Если b < 9 (b -цифра), то $a^b + 127 = 10a + b$. Если b = 1, то a + 127 = 10a = 1. Отсюда, 126 = 9a, a = 14. Если $b \ge 2$, то $10a + b = a^b + 127 > a^2 + 127$. Отсюда получаем неравенство $a^2 10a + 118 \le 0$, которое не имеет решений в натуральных числах.

Докажем, что при $a \ge 2$ и b > 9 задача не имеет решений.

Пусть
$$b-n$$
 – значное число $(10^n-1\leq b<10^n)$, $a^b+127=10^n\cdot a+b$. Тогда $a^b+127>a^{b-1}\cdot a>2^{b-1}\cdot a$, а $10^n+b<10^n+10^n<10^n\cdot 2a$. Отсюда, $2^{b-1}\cdot a<10^n\cdot 2a\Rightarrow 2^{b-1}<10^n$, где $b-n$ – значное число. Однако последнее неравенство не верно: если $b>10^{n-1}$, то $2^{b-1}>2^{10^n-2}$.

Докажем, что $2^{10^n-2}>10^n$ при всех n>2. При n=2 неравенство имеет вид $2^{10^2-2}=2^8>10^2$, а при переходе к n+1 левая часть неравенства увеличивается в 2^{90} раз, а правая – только в 10 раз.

- **1.10.** По условию задачи $a^2b=3a\cdot b$. Пусть b-n- значное число $(10^{n-1} \le b < 10^n)$. Тогда $a^2\cdot 10^n+b=3$ $ab \Rightarrow$
- $\Rightarrow a^2 \cdot 10^n = b (3a-1) < 10^n \cdot (3a-1)$. Среди решений неравенства $a^2 3a + 1 < 0$ содержится только два натуральных числа a = 1 или a = 2. Если a = 1, то $10^n + b = 3b \Rightarrow b = 5 \cdot 10^{n-1}$. Если a = 2, то $4 \cdot 10^n + b = 6b \Rightarrow 4 \cdot 10^n = 5b \Rightarrow b = 8 \cdot 10^{n-1}$.
- **1.11.** По условию задачи $ab^2 = 7a \cdot b$. Пусть b-n- значное число $(10^{n-1} \le b < 10^n)$. Тогда $10^{2n-2} \le b^2 < 10^{2n} \Rightarrow \overline{ab^2} > a \cdot 10^{2n-1} \Rightarrow 7ab > a \cdot 10^{2n-1} \Rightarrow 10^{n+1} > 10b > 7b \ge 10^{2n-1}$.

Неравенство $10^{n+1} > 10^{2n-1}$ справедливо только при n=1, т.е. b- цифра и уравнение имеет вид $a\cdot 10^n+b^2=3\,ab$; b=1,2,3,4,5,6,7,8,9; n=1,2. Если b=1, то $10a+1=3a\Rightarrow\varnothing$. Если b=2, то $a\cdot 10+4=14a\Rightarrow 4\cdot a=4\Rightarrow a=1$.

1.12. $\overline{ab71} = 1000 \cdot a + \overline{b71}$, $\overline{b71a} = 10 \cdot \overline{b71} + a$. Отсюда видно, что $\overline{ab71} \cdot 10 - \overline{b71a} = 9999 a = 9 \cdot 11 \cdot 101 \cdot a$. Из свойств делимости следует, что это число должно делиться на трехзначное простое число p и это может быть только число 101. Далее, $\overline{ab71} = 71 + 100 \cdot \overline{ab} = 71 - \overline{ab} + 101 \cdot \overline{ab}$. Из условия задачи следует, что

- число $71 \overline{ab}$ должно делиться на 101, а это возможно только в случае $71 \overline{ab} = 0 \Rightarrow a = 7, b = 1$.
- **1.13.** Рассмотрим число N=9876543210, содержащее все цифры, но не делящееся на 11. Сумма четных цифр этого числа равна 25, а сумма нечетных -20. Чтобы это число делилось на 11, надо переставить местами нечетную цифру p и четную цифру q так, чтобы 25-p+q-(20-q+p)=11. Т.е. q-p=3. Это варианты 8-5,6-3,4-1 и числа 9576843210,9873546210,9876513240. Можно начинать, например, с числа N=1234567890
- **1.14.** Пусть $N = a_n a_{n-1} ... a_2 a_1$. В записи N не должно быть нулей или двух одинаковых цифр, в противном случае при вычеркивании остальных цифр останется число, делящееся на 11. Значит в записи N должно быть все 9 цифр, а наибольшее число такого вида N = 987654321. Докажем, что N не делится на 11. Действительно, 9 8 + 7 6 + 5 3 + 3 1 + 1 = 5 < 11.
- **1.15.** Число n^n делит $2009!=1\cdot 2\cdot 3\cdot ...\cdot 2009$, если в этом произведении встречаются числа $n,2n,3n,4n,.....n\cdot n$. Так как $45\cdot 45=2025$, то при любом n<45 число n^n будет делить 2009!. Пусть n=45. Тогда $45\cdot 44=1980$, поэтому 45^{44} делит 2009!. Но $45=5\cdot 9$, поэтому 45^{45} тоже делит 2009!. Пусть $n=46,46\cdot 43=1978$, поэтому 46^{43} делит 2009!. Но $46=2\cdot 23-$ составное, поэтому 46^{46} тоже делит 2009!. Пусть n=47- простое число и $47\cdot 42=1974$, поэтому 47^{42} делит 2009!, а 47^{47} уже не делит 2009!.
- **1.16.** Доказательство аналогично предыдущему. Пусть n=45. Тогда $45 \cdot 44 = 1980$, поэтому 45^{44} делит 2013!. Но $45 = 5 \cdot 9$, поэтому 45^{45} тоже делит 2013!. Пусть $n=46, 46 \cdot 43 = 1978$, поэтому 46^{43}

- делит 2013!. Но $46=2\cdot 23-$ составное, поэтому 46^{46} тоже делит 2013!. Пусть n=47- простое число и $47\cdot 42=1974$, поэтому 47^{42} делит 2013!, а 47^{47} уже не делит 2013!.
- **1.18.** Пусть исходное выражение делится на 13. Заметим, что $n^2 + 5n + 16 = (n+9)(n-4) + 52$, (n+9) (n-4) = 13. Отсюда следует, что оба числа n+9, n-4 делятся на простое число 13. Тогда их произведение будет делиться на 169, однако число 52 не делится на 169. Противоречие. Ответ: таких чисел нет.
- **1.20.** Искомые числа имеют вид $1999 \cdot n$ ($n \le 50$). По условия задачи сумма цифр этого числа равна 25, поэтому остаток от деления этого числа на 9 равен 7. Остаток от деления числа 1999 на 9 равен 1, поэтому остаток от деления числа n на 9 равен 7, т.е. n = 7, 16, 25, 34, 43. Проверим все эти числа, отметив некоторые «хитрости» вычислений: $1999 \cdot n = 2000 \cdot n n$. Существует всего два числа такого вида, сумма цифр которых равна 25: $1999 \cdot 7 = 14000 7 = 13993$; $1999 \cdot 16 = 32000 16 = 31984$. Ответ: 13993, 31984.
- **1.25.** Выясним, какие остатки могут получиться при делении чисел вида 2^n на 9: 2,4, 8,7,5,1, 2... Так как $2^{n+6}-2^n=2^n\cdot 63$, то остатки от деления чисел 2^{n+6} и 2^n на 9 равны. Таким образом, если два числа вида 2^n имеют одинаковые остатки при делении на 9, то они отличаются на множитель 2^{6p} и не могут быть получены друг из друга перестановкой цифр. Ответ: не существует.
- **1.26.** Пусть $2^n = a \cdot 10^k + 2^m$. Если k = 1, то $2^n = a \cdot 10 + 2^m$. Это два числа: $2^5 = 30 + 2$; $2^6 = 64 = 60 + 2^2$. Если k = 2, то трехзначные степени двойки это числа 128, 256, 512, которые не

являются числами требуемого вида. Если k=3, то четырехзначные степени двойки – это числа 1024,2048,4096,8192, которые опять не являются числами заданного вида. И так далее...

Докажем, что других чисел с таким свойством не существует. Для чисел такого вида должно выполняться равенство $2^m (2^n - 1) = p \cdot 10^k$, где k – количество знаков в десятичной записи степени двойки после зачеркивания первой цифры p. Число $2^n - 1$ делится на 5 только при n = 4k $(2^{4k} - 1 = 16^k - 1 = (15 + 1)^k - 1)$. Если k = 1, то p = 2, p = 6, числа 32 и 64. Если $k \ge 2$, то $2^{4k} - 1 = (2^{2k} - 1)(2^{2k} + 1)$. Числа $2^{2k} - 1$, $2^{2k} + 1$ не делятся на 2, оба одновременно, не могут делиться на $2^n + 1 = 2^n + 1$

- **1.27.** Пусть $n=p^2=\overline{k_sk_{s-1}...k_2k_1k_0}=m^2\cdot 100+\overline{k_1k_0}$ и число n-1 наибольшее с этим свойством. Справедливо неравенство $p^2\leq m^2\cdot 100+100=(10m)^2+100$. Отсюда $p^2-100<100m^2$. Так как, $(10m+1)^2=100m^2+20m+1>100m^2$ и число p-1 наибольшее с таким свойством, то $p^2\geq (10m+1)^2$. Т.е. $p^2\geq (10m+1)^2=100m^2+20m+1\Rightarrow 20m+1\leq p^2-100m^2<100\Rightarrow m\leq 4$. Если m=4, то $m=41^2=1681$. Если m=3, то $m\leq 1000<1681=41^2$. Ответ: $m=41^2=1681$.
- **1.28.** Исходное число $N = k^2$ и все цифры числа N различны, Легко проверить, что при возведении в квадрат любого нечетного числа вторая цифра справа всегда будет четной, и, следовательно, все цифры исходного числа N должны быть

четными. Так как $N=k^2$ и все цифры числа N различны, то последней цифрой числа N могут быть только 4 или 6:

- на 2 и 8 не оканчиваются квадраты чисел;
- если последняя цифра квадрата числа равна 0, то предпоследняя тоже равна 0.

Если последняя цифра числа N равна 6, то число k оканчивается на 4 либо на 6, однако при возведении в квадрат чисел вида p6 или p4 вторая цифра справа всегда будет нечетной. Таким образом, последняя цифра числа N равна 4. Так как $N=k^2$, то при делении N на 3 в остатке может получиться только 0 или 1.

Если остаток от деления N на 3 равен 0, то число N делится на 3 и N делится на 9, и, следовательно, сумма цифр числа исходного числа делится на 9. Из четных цифр только сумма 4+0+6+8 делится на 9, а из всех возможных претендентов 6084,6804,8064,8640 только число 6084 является полным квадратом ($6084=4\cdot1521=4\cdot9\cdot169$).

Если остаток от деления N на 3 равен 1, то остаток от деления суммы цифр числа N на 3 тоже равен 1. Из четных цифр только сумма 4+0+6 дает в остатке 1 при делении на 3, а из всех возможных претендентов 604,64, только число 64 является полным квадратом. Ответ: 6084; 64.

Комментарии к главе 2:

2.1. Если a делится на $42 = 2 \cdot 3 \cdot 7$, то $a = 2^x \cdot 3^y \cdot 7^z \cdot p$, а число делителей a равно $N(a) = (1+x)(1+y)(1+z)(1+t) = 42 = 2 \cdot 3 \cdot 7$. Но число 42 имеет только три множителя, поэтому p = 1, а

степени простых сомножителей равны одному из чисел 2,3,7. Возможны 6 вариантов: (1+x,1+y,1+z) – перестановка трех чисел (2,3,7).

- **2.2.** Решение аналогично предыдущему: a делится на $10=2\cdot 5 \Rightarrow a=2^x\cdot 5^y\cdot p$, $N(a)=(1+x)(1+y)(1+t)=15=5\cdot 3$. Число 15 имеет только два множителя, поэтому p=1, а степени простых сомножителей равны одному из чисел 5,3. Возможны 2 варианта: $a=2^2\cdot 5^4=2500$, $a=2^4\cdot 5^2=400$.
- **2.5.** Пусть $n=p_1^xp_2^yp_3^z$..., тогда число делителей числа n равно $N(n)=(1+x)(1+y)(1+z)...=6=2\cdot3$. Значит n имеет всего 2 простых делителя, степени 1 и 2. Сумма всех делителей числа n равна $(1+p_1)(1+p_2+p_2^2)=3500=4\cdot5\cdot25\cdot7$. Так как p_1,p_2-1 простые, то $p_1\neq 2,\ p_1+1-1$ четное, а $1+p_2+p_2^2-1$ нечетное. Возможны варианты: $(1+p_1)(1+p_2+p_2^2)=500\cdot7=100\cdot35=20\cdot175=28\cdot125=140\cdot25=700\cdot5$.

В первом случае $1+p_1=500$, $1+p_2+p_2^2=7 \Rightarrow p_1=499$, $p_2=2$, а в остальных случаях простых чисел с такими условиями не существует.

2.8. Пусть $n=p_1^{k_1}p_2^{k_2}...p_s^{k_s}$, где $p_1, p_2, ..., p_s$ — различные простые множители. Тогда число делителей числа n выражается формулой $N(n)\!=\!(1\!+\!k_1)\!(1\!+\!k_2)\!....(1\!+\!k_s)$ и из условия задачи следует равенство $n=p_1^{k_1}p_2^{k_2}...p_s^{k_s}=N^2(n)\!=\!(1\!+\!k_1)^2(1\!+\!k_2)^2....(1\!+\!k_s)^2$, где $(1\!+\!k_1), (1\!+\!k_2), (1\!+\!k_s)$ — различные простые множители. Однако число делителей числа $(1\!+\!k_1)^2(1\!+\!k_2)^2....(1\!+\!k_s)^2$ равно 3^s . Т.е. исходное число имеет вид $n=3^k=(1\!+\!k)^2 \implies k=2, n=9$.

- **2.9.** Пусть $N = p_1 \cdot p_2 \cdot ... \cdot p_n$ делится на произведение
- $N=p_1\cdot p_2\cdot ... p_n\div (p_1-1), (p_2-1), (p_3-1), ..., (p_n-1), \qquad \text{где}$ $p_1< p_2< p_3< ..< p_n-\text{простые числа,} \qquad \text{причем,} \qquad p_1-1=1, \text{ a}$ $(p_2-1), (p_3-1), ..., (p_n-1)-\text{четные} \qquad \text{числа.} \qquad \text{Значит}$ $p_1=2, \ p_2-1=2, p_3-1=6, p_4=42 \ \Rightarrow N=2\cdot 3\cdot 7\cdot 43\cdot p_5...=$
- $=1\cdot 2\cdot 6\cdot 42.(p_5-1)$. Далее, p_5 простое число, p_5 1 четное и может быть равно одному из чисел: $43\cdot 2, 43\cdot 3\cdot 2, 43\cdot 7\cdot 2, 43\cdot 21\cdot 2$. Однако во всех этих случаях p_5 не является простым числом.
- **2.10.** НОК всех чисел равно $210=2\cdot 3\cdot 5\cdot 7$, следовательно, простые делители 2,3,5,7 входят в разложение всех чисел в степени не выше первой. Если p- наименьшее число из A, то любое число из A имеет с $p\ne 1$ общий делитель. Произведение всех чисел не является полным квадратом и делится на $1920=2^7\cdot 3\cdot 5 \Rightarrow$ это числа 6,10,14,30,42,70,210,105. Набор 2,6,10,14,30,42,70,210 условию задачи не удовлетворяет (произведение этих чисел полный квадрат).
- **2.11.** Дробь сократима, если $\frac{7n^2 + 11n + 4}{6n^2 + 5n} = \frac{p \cdot m}{p \cdot k},$ т.е. у

числителя и знаменателя есть общий делитель. Заметим, что $\frac{7n^2+11n+4}{6n^2+5n} = \frac{(n+1)(7n+4)}{n(6n+5)}.$ Дробь будет сократима, если у

сомножителей в числителе и знаменателе найдутся общие делители. Вычислим:

$$HO\mathcal{D}(n+1,n)=1;\ HO\mathcal{D}(n,7n+4)=(n,4);$$

$$HOД(6n+5, n+1) = (-1; n+1) = (-1; n) = 1;$$

$$HOД(6n+5, 7n+4) = (5n+5, n-1) = (11, n-1).$$

Легко заметить, что при n=2p или n-1=11p не все $HO\mathcal{A}$ равны единице и дробь можно сократить на 2 или 11. будет **2.12.** Так как при всех натуральных n верно неравенство $n^2+2>2n-1$, то $x=\frac{p}{q}>1$. Из уравнения следует, что $(n^2+2)^q=(2n-1)^p$, а из единственности разложения на простые множители следует, что числа 2n-1 и n^2+2 имеют одинаковые простые делители, т.е. число n^2+2 делится на 2n-1.

$$n^{2} + 2 = (2n - 1)\left(\frac{n}{2} + \frac{1}{4}\right) + \frac{9}{4} \implies \frac{n^{2} + 2}{2n - 1} = \frac{n}{2} + \frac{1}{4} + \frac{9}{4(2n - 1)}.$$

Если выражение справа – целое число, то

$$4 \cdot \frac{n^2 + 2}{2n - 1} = 2n + 1 + \frac{9}{(2n - 1)}$$
 тоже целое число, а это возможно

только при n=1, 3, 5. Проверим все эти числа: n=1, 2n-1=1;

$$n=3, \frac{n^2+2}{2n-1}=\frac{11}{5}; n=5, \frac{n^2+2}{2n-1}=\frac{27}{9}=3.$$
 Other: $n=5$.

Комментарии к главе 3:

- **3.1.** Докажем, что n < 5. Если $n \ge 5$, то левая часть равенства $1 + 2! + 3! ... + n! \equiv 1 + 2! + 3! + 4! \pmod{5} \equiv 3 \pmod{5}$, а при делении на 5 правой части равенства (квадрата натурального числа) в остатке будет только 0,1,4. Осталось проверить числа n = 1,2,3,4.
- **3.2.** Докажем, что n < 5. Если $n \ge 5$, то левая часть равенства $13 + 5n + n! \equiv 3 \pmod{5}$, а при делении на 5 правой части равенства (квадрата натурального числа) в остатке может получиться только 0,1,4. Проверяем числа n = 1,2,3,4.

- **3.3.** Докажем, что n < 3. Если $n \ge 4$, то левая часть уравнения всегда делится на 4, а правая часть при делении на 4 даст остаток 1 или 2. Рассмотрим случаи n = 1, 2, 3: $n = 1(1+4-9 \ne k^2)$, n = 2(2+8-9=1), n = 3(6+12-9=9).
- **3.4.** Докажем, что $n \le 4$. Если $n \ge 5$, то левая часть уравнения $12 \, n! + 11^n 1 + 3 = 12 \, n! + 10 \, (11^{n-1} + ... + 1) + 3$ всегда даст в остатке 3 при делении на 5, а правая часть уравнения (квадрат натурального числа) при делении на 5 даст в остатке 0, 1 или 4. Рассмотрим все случаи: $n = 1(12 + 11 + 2 = 25 = 5^2)$, а при $n = 2, 3, 4 \, (12 \, n! + 11^n + 2 \neq k^2)$,
- **3.5.** Заметим, что $k=0, n=\pm 2$ являются решением. Если k<0, то $1+2^k+2^{2k+1}<2$ и, следовательно, уравнение не имеет решений. При k=1 уравнение не верно. Пусть $k\geq 2$. Если k четное, то остаток от деления левой части уравнения на 3 равен 1, а если k нечетное, то остаток при делении на 3 левой части равен 2. Однако, при делении квадрата целого числа на 3 в остатке не может получиться 2, поэтому, k четное число. Пусть k=2p, n=2m+1 а уравнение будет иметь вид $1+4^p+2\cdot 4^{2p}=n^2=4m^2+4m+1$.

Отсюда, $4^{p-1}(1+8\cdot 4^{p-1})=m(m+1)$. Только одно из двух чисел m, m+1 четное и оно должно делиться на 4^{p-1} . Пусть $m=4^{p-1}\cdot d$, причем число d – нечетное.

Тогда
$$4^{p-1}(1+8\cdot 4^{p-1})=4^{p-1}\cdot d\ (4^{p-1}\cdot d+1)\Rightarrow$$

$$1+8\cdot 4^{p-1}=d\ (4^{p-1}\cdot d+1)\Rightarrow$$

$$4^{p-1}(8-d^2)=d-1\Rightarrow 8-d^2>0\Rightarrow d=1\Rightarrow\varnothing.$$

Пусть $m+1=4^{p-1}\cdot d$. Тогда уравнение имеет вид $4^{p-1}(1+8\cdot 4^{p-1})=(d\cdot 4^{p-1}-1)\cdot d\cdot 4^{p-1}\Rightarrow 1+8\cdot 4^{p-1}=d^2\cdot 4^{p-1}-d\Rightarrow 4^{p-1}(d^2-8)=d+1$. Если d=3, то p-1=1 и $k=4, n=\pm 23$. Если d>3, то $d^2-8>d+1$ и уравнение не имеет решений. Ответ: k=0, $n=\pm 2$: k=4, $n=\pm 23$.

OTBET: K = 0, $N = \pm 2$; K = 4, $N = \pm 23$.

- **3.6.** Обыграем четность чисел: $2xy = x^2 + 2y \implies x = 2p \implies 2py = 2p^2 + y \implies y = 2k.$ $2pk = p^2 + k \implies k = pt \implies pt = p + t \implies t = pn \implies pn = 1 + n \implies n = 1, p = 2.$
- **3.7.** $m^4-2n^2=1\Rightarrow 2n^2=m^4-1\Rightarrow n-$ четное, а m- нечетное. $m^4+n^4=n^4+2n^2+1=(n^2+1)^2\Rightarrow n^4=(n^2+1-m^2)(n^2+1+m^2)$. Если $1-m^2<0$, то $n^2+1-m^2< n^2$ и n^2+1+m^2 делится на n^2 , а, следовательно, $1+m^2$ должно делиться на 4, что невозможно. Следовательно, $1-m^2=0\Rightarrow m=\pm 1, \Rightarrow n=0$.
- **3.8.** $2^x = y^2 1 = (y 1)(y + 1) \Rightarrow$ числа y 1, y + 1 степени 2, т.е. $y 1 = 2^p, y + 1 = 2^p + 2 \Rightarrow 2^x = 2^p (2^p + 2)$. Если $p \ge 2$, то $2^{x-1} = 2^p (2^{p-1} + 1) \Rightarrow 2^{p-1} = 1 \Rightarrow p 1 = 0 \Rightarrow p = 1 \Rightarrow 2^x = 8$.
- **3.9.** Натуральное число x^2 при делении на 3 дает в остатке 0 или 1, а при n>0 левая часть при делении на 3 даст в остатке 2. Значит n=0, $x^2=9$.
- **3.10.** Одно решение получается сразу: n=0, k=2006. Докажем, что других решений нет. Если n>0, то $2^n(1+2^n+...+2^{n(k-1)})=2\cdot 1003 \Rightarrow 2^n=2$, $1+2+...+2^{k-1}=1003 \Rightarrow 2^k-1=1003$. Однако, последнее уравнение не имеет решений.
- **3.11.** Решение аналогично предыдущему: n = 0, k = 2010.

При n > 0,

$$3^{n}(1+3^{n}+...+3^{n(k-1)})=3\cdot 670\Rightarrow 3^{n}=3,\,1+3+...+3^{k-1}=670\Rightarrow$$
 $\Rightarrow \frac{3^{k}-1}{3-1}=670.$ Однако последнее уравнение не имеет решений.

3.12.
$$xy = 13(x + y) \Rightarrow xy - 13x - 13y + 169 - 169 = 0.$$
 $(x-13)(y-13) = 169 \Rightarrow x-13 = 169, y-13 = 1 \lor [-13 = 13, y-13 = 13.$

36.
$$\frac{1}{m} + \frac{1}{n} = \frac{1}{25} \implies mn - 25(m+n) = 0 \implies (m-25)(n-25) = 625.$$

Так как m > n, то m - 25 > n - 25 и возможны варианты: m - 25 = 625, n - 25 = 1; m - 25 = 125, n - 25 = 25.

- **3.16.** Из уравнения видно, что правая часть всегда нечетная, а левая будет нечетной, если одно число больше единицы, а другое равно единице.
- Пусть $x=1 \Rightarrow y!=10z+12 \Rightarrow y < 5 \Rightarrow y=2, z=-1$. Если $y \ge 5$, то 12 разделится на 10 без остатка.
- **3.18.** Если x < y, то правая часть исходного равенства делится на x+1, а левая нет: x!(1+(x+1)(x+2)....y) = x!(x+1)(x+2)....(x+y).

Значит $x = y \Rightarrow 2 \cdot x! = (2x)! \Rightarrow 2 = (x+1)(x+2) \cdots (2x) \Rightarrow x+1=2.$ Почему других нет?

- **3.19.** Из условия задачи следует, что m > n, m > k. Рассмотрим три случая: 1)k > n; 2)k < n; 3)k = n.
- 1) Если k > n, то левая часть уравнения делится на k!, а правая – нет.
- 2) Если k < n, то, сократив обе части равенства на k!, получим равенство 5 = (k+1)(k+2)...m (k+1)(k+2)...n. Отсюда следует, что $k+1=5, n=5, 2\cdot 5!=m! \Rightarrow \emptyset$.

- 3) Ecam k = n, to $6 \cdot k! = m! = k! \cdot (k+1)(k+2) \dots m \Rightarrow$ $6 = (k+1)(k+2) \dots m \Rightarrow k+1=2, k=n=1, m=3 \text{ мам } m=6, k=n=5.$ Other: m=3, k=n=1; m=6, k=n=5.
- **3.21.** Пусть $n \ge k \ge m, p > n$. Тогда $(n+1)! \le p! = n! + k! + m! \le 3n!$, что невозможно при n > 3. Если $n \le 3$, то возможен только один вариант n = k = m = 2, p = 3.
- **3.22.** Из уравнения $k!=5\cdot m!+12\cdot n!$ следует, что k>m, k>n. Пусть $s=\max(m;n), k=.s+p$. Тогда $(s+p)!=5\cdot m!+12\cdot n!<17s!$ и (s+1)(s+2)...(s+p)<17. Откуда следует, что p<3, иначе $(s+1)(s+2)(s+3)>2\cdot 3\cdot 4=24$. Рассмотрим два случая: p=1, k=s+1 и p=2, k=p+2.
- 1.1. $p = 1, k = s + 1, n = m = s \Rightarrow (n+1)n! = 17n! \Rightarrow n+1=17, n=16.$
- 1.2. $p=1, k=s+1, m=s>n \Rightarrow (m+1)m!=5m!+12n! \Rightarrow (m-4)m!=12n!.$ Отсюда следует, что $m \geq 5; 12n!=(m-4)m!>(m-4)(m)n!\Rightarrow 12>(m-4)m\Rightarrow m=5, m=6.$ Если $m=5\Rightarrow 12n!=5!\Rightarrow 12n!=120\Rightarrow n!=10\Rightarrow\varnothing.$

Если $m=6 \Rightarrow 12n!=2 \cdot 6! \Rightarrow n!=120 \Rightarrow n=5 \Rightarrow m=6, k=7.$

- 1.3. $p=1, k=s+1, n=s>m \Rightarrow (n+1)n!=5m!+12n! \Rightarrow (n-11)n!=5m!.$ Отсюда $n \ge 11$; $5m!=(n-11)n!>(n-11)\cdot n\cdot m! \Rightarrow 5>(n-11)n \Rightarrow \varnothing.$
- **3.24.** $y^2 = 16 + z^x \Rightarrow z^x = y^2 16 = (y 4)(y + 4) = p \cdot (p + 8)$. Так как z простое, то p = 1, либо $p = z^k$. Если p = 1, то $p + 8 = 9 = 3^2$, $y^2 = 16 + 9 = 25 = 5^2$.

Если $p=z^k$, то $z^x=z^k(z^k+8)$. Значит, простое число z в некоторой степени делит число $8 \Rightarrow z^k=2 \Rightarrow z^k+8=10$, что невозможно. Или $z^x=8 \Rightarrow z^k+8=16 \Rightarrow z^x=8 \cdot 16=144=12^2$.

3.25. Справедливо равенство $n^5 + n^4 + 1 = (n^2 + n + 1)(n^3 - n + 1)$. Отсюда $7^m = (n^2 + n + 1)(n^3 - n + 1)$. Легко заметить, что при n = 2

 $n^2+n+1=7, \, n^3-n+1=7, \, \mathrm{r.e.}$ пара n=2, m=2 решение. Докажем, что других решений нет. Пусть $n\geq 3$, тогда $n^2+n+1>1, \, n^3-n+1>1$ и $7^p=n^2+n+1, \, 7^q=n^3-n+1$. Отсюда $7^p-1=n(n+1), \, 7^q-1=n(n^2-1)\Rightarrow 7^p-1=(7^q-1)\cdot k\Rightarrow \, q$ делит p. T.e. $n^3-n+1=7^p=7^{q\cdot t}=(n^2+n+1)^t$.

Однако, $(n^2+n+1)^2 > (n^3-n+1)$, т.е. 1 < t < 2, однако это неверно. Следовательно, других решений нет. **3.26.** Перепишем исходное уравнение в виде $m (n^2-1)=10^5 n$. Заметим, что m=n=0 - решение уравнения. Пусть m, n > 0. Тогда $m(n+1)(n-1)=10^5 n$, откуда следует, что m делится на n(m=pn). Т.е. $p(n+1)(n-1)=10^5$. Если n четное, то одно из соседних чисел n+1, n-1 имеет простой делитель, отличный от m=1, что невозможно. Значит, m=1 нечетное, а m=1, m=1 два соседних четных числа, не имеющих простых делителей кроме m=10. Выпишем все такие четные числа m=11, не имеющие простых делителей кроме m=12 и m=13, у которых произведение m=14, не превосходит m=15.

2	$2 \cdot 5 = 10$	$2 \cdot 25 = 50$	$2 \cdot 125 = 250$
4	$4 \cdot 5 = 20$	$4 \cdot 25 = 100$	
8	$8 \cdot 5 = 40$	$8 \cdot 25 = 200$	
16	16.5 = 80		

Если n = 9, то p = 1250, m = 11250.

Otbet: n=3, m=37500; n=9, m=11250.

3.27. Левая часть уравнения при делении на 3 дает в остатке 1, следовательно, k — четное число (k = 2p). Но тогда правая часть уравнения при делении на 4 дает в остатке 1, и, следовательно, m — должно быть четным числом (m = 2t)..

Тогда $4^n=2^{2n}=5^{2p}-3^{2t}=(5^p-3^t)(5^p+3^t)$, откуда $5^p-3^t=2^q$, $5^q+3^t=2^s$ или $5^p=\frac{2^q+2^s}{2}$, $3^s=\frac{2^q-2^s}{2}=2^{q-1}-2^{s-1}$. Из последнего соотношения следует, что s-1=0, а $3^{s-1}=2^{q-1}-1$, q-1 четное число, а $3^{s-1}=(2^t+1)(2^t-1)$. Последнее равенство возможно, только если $2^t-1=1$, $2^t+1=3 \Rightarrow t=1$, s=2, q=2, p-1, n=m=k=2. Ответ: m=n=k=2.

- **3.28.** Из уравнения видно, что $2^n \equiv 1 \pmod{3}$, т.е. n- четное число $(n=2p \Rightarrow 2^{2p}=4^p \equiv 1 \pmod{3})$. Далее, $3^m+3\equiv 0 \pmod{4} \Rightarrow m-$ четное $(3^{2k}+3=9^k+3\equiv 1+3 \pmod{4})$. Наконец, $3^{2k}+7=2^{2p} \Rightarrow 7=(2^p)^2-(3^k)^2=(2^p-3^k)(2^p+3^k)=1\cdot 7=7\cdot 1$.
- **3.29.** $3 \cdot 2^m = n^2 1 = (n-1)(n+1)$ четное число, т.е. n нечетное число. Возможны два варианта представления нечетного числа. 1) n = 2p + 1, где p нечетное: тогда $3 \cdot 2^m = 2p(2p+2) = 4p(p+1)$. Так, как p нечетное, то p делит $3 \Rightarrow p = 1 \lor p = 3$. Если p = 1, то $3 \cdot 2^m = 4 \cdot 1 \cdot 2 \Rightarrow \varnothing$. Если p = 3, то $3 \cdot 2^m = 4 \cdot 3 \cdot 4 \Rightarrow m = 4$.
- 2) $n=2^k\cdot p+1$, где p- нечетное. Тогда $3\cdot 2^m=2^k\cdot p(2^k\ p+2)=2^{k+1}\ p(2^{k-1}\ p+1).$ Отсюда следует, что $m=k+1,\ 3=p(2^{k-1}\ p+1)\Rightarrow p=1,k-1=1,\ m=3,\ n=5.$
- **3.30.** Перепишем уравнение в виде: $2^m = 3^n + 1$. Попробуем подобрать решение: $m = 1 \Rightarrow \emptyset$; $m = 2 \Rightarrow n = 1$, но других решений

не получается. Попробуем доказать, что других решений нет методом «от противного». Пусть $m \ge 3$, $2^m = 3^n + 1$. Тогда левая часть равенства делится на 8, а правая часть в зависимости от n при делении на 8 дает в остатке 2 или 4. Противоречие.

3.31. Подберем решение: $n=1 \Rightarrow m=1$; $n=2 \Rightarrow m=3$, но других решений не получается. Докажем методом «от противного», что других решений нет. Пусть $n \geq 3$, $3^n-1=2^m$. У числа 3^n-1 остатки при делении на 8 равны 2,0,2,0...т.е. 3^n-1 делится на 8 только при четных n. Пусть n=2k. Тогда $3^n-1=(3^k-1)(3^k+1)=2^m$, а каждый из сомножителей 3^k-1 и 3^k+1 являются степенями двойки. Если $3^k-1=2^p$, а $3^k+1=2^q$, то $2=2^q-2^p=2^p(2^{q-p}-1)$. Это равенство справедливо только при q=2, p=1. Тогда k=1, n=2. Противоречие с условием $n\geq 3$.

Комментарии к главе 4:

4.1. Пусть $\frac{m}{n} < \frac{5}{8} < \frac{k}{p} \Rightarrow 5n - 8m > 0, 8k - 5p > 0.$ Будем искать

дробь, ближайшую к $\frac{5}{8}$. Разность между двумя дробями $\frac{5n-8m}{8n}$

будет наименьшей, если числитель наименьший, а знаменатель наибольший. Сведем все к решению диофантовых уравнений $5n-8m=1,\,10\leq n\leq 99$

$$\Rightarrow n = 5 + 8t, m = 3 + 5t \Rightarrow t = 11, n = 93, m = 58;$$

4.2.
$$\frac{96}{35} = \frac{3456}{35 \cdot 36}, \frac{97}{36} = \frac{3395}{35 \cdot 36} \Rightarrow \frac{3395}{35 \cdot 36} < \frac{m}{n} < \frac{3456}{35 \cdot 36}.$$
 Среди дробей,

знаменатель которых равен $35 \cdot 36 = 5 \cdot 7 \cdot 6^2$, выберем те, у которых

числитель и знаменатель имеют общие множители (тогда можно будет сократить на этот множитель и уменьшить знаменатель). Между числами 3395 и 3456 содержится только несколько чисел, пропорциональных 5,6,7: $3430=35\cdot98,3420=36\cdot95,3420=42\cdot81,$ $3444=42\cdot82$. Выпишем все дроби с этими числителями и выберем требуемую:

$$\frac{3420}{36 \cdot 35} = \frac{19}{7}, \frac{3430}{35 \cdot 36} = \frac{49}{18}, \frac{3402}{35 \cdot 36} = \frac{27}{10}, \frac{3444}{35 \cdot 36} = \frac{41}{15}.$$

4.3. Последняя цифра числа равна остатку от деления этого числа на 10.

Найдем последнюю цифру числа $11^{10}-1$: $11^{10}-1=(11-1)(11^9+11^8+...+11+1)$. В этом произведении оба сомножителя делятся на 10, поэтому число $11^{10}-1$ оканчивается на два нуля.

- **4.4.** Последняя цифра числа 2^n изменяется циклически в зависимости от значения n:2,4,8,6,2... Найдем последнюю цифру числа $2^{3^4}: 2^{3^4}=2\cdot 2^{3^4-1}, 3^4-1=(9-1)(9+1)=80. 2^4=16$ $\Rightarrow 16^n$ оканчивается на $6\Rightarrow 2^{3^4-1}$ оканчивается на $6\Rightarrow 2^{3^4}$ оканчивается на 2.
- **4.5.** $2^{999} = \frac{2^{1000}}{2}$. Докажем, что $2^{1000} 1$ делится на 25.

 $2^{20}-1=(2^{10}-1)(2^{10}+1)=1025\cdot 1023 \Rightarrow 2^{1000}-1=(2^{20})^{50}-1=(2^{20}-1)(....)$. Т.е. $2^{1000}-1$ делится на 25 и оканчивается на 00, 25, 75. Тогда 2^{1000} может оканчиваться на 01, 26, 76, но 2^{1000} делится на 4 и должно оканчиваться на 76. Вопрос: Назовите две последние цифры числа p, если известно, что 2p оканчивается на 76?

4.6.
$$\underbrace{11...1}_{2n} - \underbrace{11...1}_{n} = \frac{10^{2n} - 1}{9} + 2\frac{10^{n} - 1}{9} = \frac{10^{2n} - 2 \cdot 10^{n} + 1}{9} = \frac{(10^{n} - 1)^{2}}{9}.$$

4.7.
$$\underbrace{11...1}_{100} \underbrace{55...56}_{100} = \underbrace{11....1}_{200} + \underbrace{44...4}_{100} + 1 = \underbrace{\frac{10^{200} - 1}{9} + 4\frac{10^{100} - 1}{9}}_{9} + 1 = \underbrace{\frac{10^{200} + 4 \cdot 10^{100} + 4}{9}}_{9} = \underbrace{\frac{10^{200} + 2 \cdot 10^{100} + 1 + 2 \cdot 10^{100}}{9}}_{9} + \underbrace{\frac{10^{100} + 2 + 1}{9}}_{9} = \underbrace{\frac{(10^{100} + 1) + 2(10^{100} + 1) + 1}{9}}_{9} = \underbrace{\frac{(10^{100} + 2)^{2}}{9}}_{9}.$$
 Hakoheri,
$$\underbrace{\frac{10^{100} + 2}{3}}_{100} = \underbrace{\frac{3 \cdot 10^{100} - 3 + 9}{9}}_{100} = \underbrace{3 \cdot \frac{10^{100} - 1}{9}}_{100} + 1 = \underbrace{33....34}_{100}$$

4.8. Умножим первую скобку на 9 = (10-1). Тогда $\frac{1}{9}(10^n + 10^{n-1} + ... + 10)(10-1)(10^{n+1} + 5) + 1 = \frac{1}{9}(10^{n+1} - 1)(10^{n+1} + 5) + 1 =$

$$=\frac{1}{9}(10^{2n+2}+4\cdot10^{n+1}+4)=\frac{(10^{n+1}+2)^2}{9}=\left(\frac{10^{n+1}+2}{3}\right)^2.$$
 Octaetcs

показать, что последняя дробь является целым числом: $\frac{10^{n+1}+2}{3}=\frac{10^{n+1}-1+3}{3}=\frac{10^{n+1}-1}{3}+1\;.$

4.9. Первый способ.

$$\underbrace{11...1^{2}}_{n+1} = \left(\frac{10^{n} - 1}{3}\right)^{2} = \frac{10^{n+2} - 2 \cdot 10^{n+1} - 1}{9} = 10^{n+1} \cdot \frac{10^{n+1} - 1}{9} - \frac{10^{n+1} - 1}{9} = \underbrace{11...100...0}_{n+1} - \underbrace{11...1}_{n+1} = \underbrace{11...1088...89}_{n}.$$

Второй способ.

$$\underbrace{33...3}_{n+1}^{2} = \left(\frac{10^{n-1} - 1}{3}\right)^{2} = \frac{10^{2n+2} - 2 \cdot 10^{n+1} \, 1}{9} = \frac{10^{n} - 1}{9} \cdot 10^{n+2} + 8 \cdot \frac{10^{n+1} - 1}{9} + 1 = \underbrace{11...100...0}_{n+2} + \underbrace{88...8}_{n+1} + 1.$$

4.10. Первый способ.

$$\frac{33...34}{n^2} = \left(\frac{10^{n+1} + 2}{3}\right)^2 = \frac{10^{n+2} + 4 \cdot 10^{n+1} + 4}{9} = \frac{10^{n+2} - 1 + 40 \cdot (10^n - 1) + 45}{9} = \frac{10^{2n+2} - 1}{9} + 40 \cdot \frac{10^n - 1}{9} + 5 = \underbrace{11...1}_{2n+1} + \underbrace{44...40}_{n} + 5 = \underbrace{11...155...56}_{n+1}.$$

Второй способ. Заметим, что если $x = \underbrace{33...34}_{n}$, то $3x = 1\underbrace{00...02}_{n}$, а

$$(3x)^2 = 100...0400...0$$

4.11. Первый способ.

$$x = 100\underbrace{11...17}_{n} = 1\underbrace{00...0}_{n+3} + \underbrace{11...1}_{n+1} + 6 = 10^{n+3} + \underbrace{10^{n+1} - 1}_{9} + 6 = \underbrace{\frac{1}{9}}(9 \cdot 10^{n+3} + 10^{n+1} + 53) = \underbrace{\frac{1}{9}}(900 \cdot 10^{n+1} + 10^{n+1} + 53) = \underbrace{\frac{1}{9}}(901 \cdot 10^{n+1} + 53) = \underbrace{\frac{1}{9}}(901 \cdot 10^{n+1} - 901 - 954) = \underbrace{\frac{1}{9}}(901 \cdot (10^{n+1} - 1) + 954) = 53 \cdot \underbrace{\frac{1}{9}}(17 \cdot (10^{n+1} - 1) + 18).$$

Второй способ. Пусть $b_n = 100 \underbrace{11...17}_{n}$. Тогда

$$b_{n+1} = 100\underbrace{11...17}_{n+1} = 100\underbrace{11...17}_{n+1} = b_n \cdot 100 + 17 = 100\underbrace{11...170}_{n+1} - 70 + 17 = 10 \cdot b_n - 53.$$

Отсюда следует, что если b_n делится на 53, то b_{n+1} тоже делится на 53. Так как $b_1=10017=53\cdot 89,$ то все доказано.

Третий способ. Из предыдущего
$$b_{n+1}-b_n=9\cdot b_n-53=9\cdot 100\underbrace{11\dots 17}_n-53=9\cdot (100\underbrace{11\dots 1}_n+6)-53=9\cdot 100\underbrace{11\dots 1}_{n+1}+1=900\underbrace{99\dots 9}_{n+1}+1=901\underbrace{00\dots 0}_{n+1}=901\cdot 10^{n+1}=53\cdot 17\cdot 10^{n+1}.$$

4.12.
$$\underbrace{11...1}_{n} \underbrace{211...1}_{n} = \underbrace{11...1}_{n+1} \underbrace{00...0}_{n} + \underbrace{11...1}_{n+1} = \underbrace{11...1}_{n+1} \cdot \underbrace{100...0}_{n-1} 1.$$

Например, легко заметить, что при нечетных n последнее произведение делится на 11^2 .

4.13.
$$\underbrace{44...4}_{1980} - 11 \cdot \underbrace{44...4}_{990} + 9 = 4 \cdot \frac{10^{1980} - 1}{9} - 11 \cdot 4 \cdot \frac{10^{990} - 1}{9} + 9 = \left(\frac{2 \cdot 10^{990} - 11}{3}\right)^{2}.$$

Далее,
$$\frac{2 \cdot 10^{990} - 11}{3} = \frac{2(10^{990} - 1) - 9}{3} = 2 \cdot \underbrace{33...3}_{990} - 3 = \underbrace{66...63}_{989}$$
.

Второй способ. Пусть $a = \underbrace{11...1}_{990}$.

Тогда
$$\underbrace{44...4}_{1980} - 11 \cdot \underbrace{44...4}_{990} + 9 = 4a(9a+1) + 4a - 44a + 9 = (6a-3)^2$$
.

4.16. $\overline{ab}+\overline{ba}=1$ (a+b) $\Rightarrow a+b=11$. Далее, знаменатель исходной прогрессии равен $q=\frac{ab}{a}=b>1$ (b-цифра). Из свойства прогрессии получаем

$$a \cdot b^2 = 10a + b + 2b^2 - b - 20$$
, $a \cdot b^3 = 10b + a + 2b^3 - 10b - 2$.

Отсюда $(2-a)(b^2+10)=0$, $b^3(a-2)=a-2$. Так как a и b- цифры, то a=2,b=9. Тогда исходная последовательность имеет вид $2,2\cdot 9,2\cdot 9^2,\, 2\cdot 9^3$.

- **4.17.** Если числа 2a, 3b, 10a+b-2a, 10b+a+5a-6b образуют арифметическую прогрессию, то b=2a. С другой стороны, a, b-1 цифры, $a-b \le 8$ и $ab-ba=9(a-b)=p^2$. Отсюда $a-b=1 \Rightarrow a=2, b=2$ или $a-b=4 \Rightarrow a=4, b=8$, а сумма квадратов всех чисел равна 85.
- **4.20.** Пусть s(a) сумма цифр числа a и по условию задачи s(a) и s(a+1) делятся на a . Покажем, что число a оканчивается на a . Если последняя цифра числа a равна a равна a оба этих числа не могут делиться на a . Таким образом, число a имеет вид $\overline{b9...9}$, где в записи числа стоит a девяток, a последняя цифра числа a не равна a . Тогда

 $s(a) = s(b) + k \cdot 9 = 4p$, s(a+1) = s(b) + 1 = 4m. Вычтем первое равенство из второго. $9 \cdot k - 1 = 4(p-m) \Rightarrow 9 \cdot k - 4(p-m) = 1$.

Если мы найдем решение диофантового уравнения и найдем такие k и n, что 9k-4n=1, то в записи числа a после числа b стоит k девяток, а s(b)+1 делится на 4. Частным решением этого уравнения являются числа k=1,n=2, а общее решение можно записать в виде k=1+4t, n=2+9t.

При k=1, a=39,79. При k=5, a=2199999, 1299999, 3099999 и еще любые числа вида $\overline{b99999}$, у которых s(b)+1 делится на 4.

- **4.21.** Решение аналогично решению задачи 92. В этом случае диофантовое уравнение будет иметь вид 9k-5n=1, одно из решений которого k=4, n=7. Следовательно, одно из решений будет иметь вид $\overline{b9999}$, где s(b)+1 делится на 5. Например, если b двузначное число, то b может быть одним из чисел $b=21,\ 12,\ 30,18,81,27,72,36,63,45,54,90$.
- **4.23.** $54 = 2 \cdot 3^3$, $128 = 2^7 \Rightarrow 128 = 54 \cdot q^n \ (n > 0) \Rightarrow q^n = \frac{2^6}{3^3}$. Любой член данной прогрессии может быть записан в виде $N = 54 \cdot q^m = 2^{1 + \frac{6m}{n}} \ 3^{\frac{3m}{n}}$ и это число будет целым, если $1 + \frac{6m}{n}$, $3 \frac{3m}{n}$ натуральные числа. Если дробь $\frac{m}{n}$ несократима, то n делитель числа 3.

В результате перебора получим четыре пары чисел n и m: n=1, m=0; n=1, m=1; n=3, m=1; n=3, m=1; n=3, m=2 и четыре числа: 54,72,96,128.

4.24. Первый способ.

$$120\underbrace{33...308}_{n} = 12 \cdot 10^{n+3} + \frac{10^{n} - 1}{3} \cdot 100 + 8 = \frac{1}{3} \cdot (360 \cdot 10^{n+1} + 10^{n+2} - 100 + 24) = \frac{1}{3} \cdot (360 \cdot 10^{n+1} + 10^{n+2} + 10^{$$

$$\frac{1}{3} \cdot (361 \cdot 10^{n+2} - 76) = 19 \cdot \frac{1}{3} \cdot (19 \cdot 10^{n+2} - 4) = \frac{19}{3} \cdot (19 \cdot (10^{n+2} - 1) + 15).$$

Легко заметить, что число в скобках делится на 3.

Второй способ. $a_1 = 120308 = 19.6332$ – делится на 19.

Пусть
$$a_n = 120\underbrace{33...3}_{n}08$$
. Тогда $a_{n+1} = 120\underbrace{33...3}_{n+1}08 = 120\underbrace{33....3}_{n}000 + 308 =$

=12033...3080 + 228 = 10 ·
$$a_n$$
 + 228 = 10 a_n +19 · 12 . Так как a_1 делится

на 19, то для любого n то a_{n+1} делится на 19.

Содержание

Глава 1	3
Глава 2	8
Глава 3	10
Глава 4	13
Комментарии главе 1	16
Комментарии главе 2	25
Комментарии главе 3	28
Комментарии главе 4	34
Содержание	41

Учебное издание

Делимость целых чисел в задачах

Составитель

Чуваков Валерий Петрович (chv@uriit.ru)

Югорский физико-математический лицей г. Ханты-Мансийск, ул. Мира, 151